Перейти к основному содержанию
Реклама
Прямой эфир
Мир
В Белоруссии рассказали о подарке Лукашенко ко дню рождения Путина
Мир
Посольство РФ получило более 50 обращений от французов о проживании в России
Мир
Лукашенко заявил о желании восстановить СНГ в прежнем составе
Армия
Истребители Су-34 нанесли удар по опорному пункту ВСУ в курском приграничье
Мир
Орбан заявил о невозможности победы Украины на поле боя
Мир
Ушаков рассказал о теплом поздравлении Путину от Си Цзиньпина
Мир
Второй саммит по Украине в ноябре не состоится
Экономика
Минпромторг намерен повысить контроль за нелегальным оборотом косметики
Здоровье
Диетолог назвал семь правил питания для людей до 30 лет
Мир
Премьер Армении Пашинян показал кадры велопрогулки по берегу Москвы-реки
Общество
Чемпионка РФ по ледолазанию Алена Власова умерла в возрасте 35 лет
Мир
СМИ сообщили о вероятном разводе Канье Уэста и Бьянки Цензори после 2 лет брака
Авто
Власти РФ спрогнозировали снижение импорта легковушек с 2025 года
Мир
В МИД Ирана заявили о полной готовности к войне
Экономика
Эксперт спрогнозировал стоимость нефти Brent в октябре
Мир
В ФРГ подтвердили готовность Шольца к диалогу с Путиным
Общество
Стоматолог развеял главные мифы о жевательной резинке
Общество
Пятеро альпинистов из России погибли в Непале. Что известно
Главный слайд
Начало статьи
Озвучить текст
Выделить главное
Вкл
Выкл

Стволовые клетки, которые 13 дней провели на Международной космической станции, доставили ученым Сеченовского университета. Их изучение поможет в поиске средств борьбы с атрофией во время длительных космических полетов, лечении переломов в условиях невесомости и создании лекарств от костных болезней на Земле. Если мы поймем, как и почему на орбите нарушается рост костей, и найдем молекулярные механизмы влияния на этот процесс, человечество сделает большой шаг к жизни в космосе, уверяют эксперты.

Эффект невесомости

Ученые Института регенеративной медицины Сеченовского университета получили образцы биологических материалов, которые провели в космосе 13 дней. Стволовые клетки человека находились в биореакторе МСК-2 на борту российского сегмента МКС. Их дальнейшее изучение имеет важное практическое значение для пилотируемых полетов — оно поможет найти средства противодействия деградации тканей в организме космонавтов, возникающей из-за длительного нахождения в невесомости. А также лечить экипажи в случае переломов прямо в космосе.

— Особый интерес представляет получение [из стволовых клеток, побывавших в космосе] модели костной и хрящевой ткани, так как именно эта ткань первая страдает в условиях невесомости у космонавтов. Культивирование стволовых клеток на Земле и в космосе значительно отличается из-за воздействия факторов космического полета. Изучая клетки, которые возвращаются к нам с орбиты, мы открываем для себя их уникальные свойства. В перспективе они могут лечь в основу создания искусственных органов, — говорит младший научный сотрудник Института регенеративной медицины Сеченовского университета Наталья Чепелова.

Микрогравитация, воздействующая на клетки внутри космического корабля на орбите Земли, позволяет создавать экспериментальные модели заболеваний «в пробирке», которые невозможно имитировать в земных условиях. Это обеспечивает огромные возможности для прорывных научных исследований. Первый биореактор, благодаря которому был реализован эксперимент Сеченовского университета, доставили на МКС в 2018 году.

лаборатория
Фото: Global Look Press/Pravda Komsomolskaya

— Космическая биология возникла потому, что за пределами нашей планеты совсем другие условия. Наш организм, адаптированный к жизни на поверхности Земли, в космосе будет функционировать иначе, у клеток там совершенно другие взаимодействия, — рассказывал «Известиям» накануне запуска реактора четыре года назад ведущий научный сотрудник отдела передовых клеточных технологий Первого медуниверситета Михаил Крашенинников. — Основные проблемы, выявленные еще более полувека назад, связаны с тем, что люди после возвращения из невесомости не могут ходить. У них атрофируются мышцы, а из костей вымывается кальций. Наша цель — решить и эту проблему среди прочих.

Метод выращивания тканей вне живого организма помогает ученым постичь суть роста и развития клеток не только для космических полетов и научных экспериментов, но и для применения в реальной медицинской практике.

— Мы сможем подбирать активные биологические вещества, которые способны предотвращать развитие дегенеративных процессов, а также улучшать регенерацию костных и хрящевых тканей человека. Изучение процессов, которые происходят в созданных моделях тканей в условиях космического полета, даст нам новые возможности для лечения дегенеративных заболеваний, в том числе остеоартрита и остеопороза у пациентов на Земле, — прокомментировал ход исследований младший научный сотрудник Института регенеративной медицины Артем Антошин.

Условие космической экспансии

Изучение особенностей биологии в условиях невесомости и потенциально других планет имеет решающее значение для нашей экспансии в космос как вида, считает сотрудник департамента биологии и фундаментальной медицины УрФУ Артем Минин. По его мнению, клеточные модели намного удобнее для исследований, чем животные и тем более люди. Эксперименты с культурами клеток в условиях микрогравитации — это большой прорыв. Авторы изучили очень важную для будущих межпланетных путешественников проблему — нарушения образования костей и хрящей, которые отмечались и у животных, и у астронавтов в космосе, подчеркнул специалист.

— Если мы поймем, как и почему происходит нарушение роста костей, и, главное, найдем молекулярные механизмы, на которые можем воздействовать, для того чтобы это предотвратить, это станет большим шагом для человечества в сторону жизни в космосе. Хотя и здесь, на Земле, остеопороз остается существенной проблемой, особенно в старшем возрасте. Инструменты, которые мы получим из космоса, помогут многое исправить в этой области, — сказал Артем Минин.

МКС
Фото: Роскосмос/Олег Кононенко

Эксперименты на МКС — лучший способ узнать, как на живые системы влияют условия, сформировавшиеся на околоземной орбите, считает заведующий лабораторией анализа показателей здоровья населения и цифровизации здравоохранения МФТИ Станислав Отставнов.

— Если мы хотим понять, как нам в будущем жить на околоземной орбите, то для этих задач ученые Сеченовского университета предприняли небольшой, но очень важный шаг, — сказал Станислав Отставнов.

Во время полетов космонавт теряет до 1,5% костной ткани в месяц, а ее минерализация снижается как на орбите, так и после возвращения, рассказывает профессор кафедры генетики ЮФУ Татьяна Шкурат. Скорость восстановления костной массы всегда индивидуальна и зависит от генетики. А значит, важно персонифицировать подход, исследовать молекулярные механизмы этого процесса и на их основе разработать генно-терапевтические подходы к быстрому восстановлению.

Дальнейшие исследования, направленные на создание средств борьбы с деградацией костных тканей и лекарств от костных болезней, после получения положительных результатов на клеточных моделях потребуют экспериментов с участием человека.

Читайте также
Прямой эфир