Перейти к основному содержанию
Реклама
Прямой эфир
Общество
Гидрометцентр спрогнозировал дождь и +14 градусов в Москве 6 октября
Мир
FT сообщила о резком росте цен на нефть из-за эскалации на Ближнем Востоке
Общество
Победительницей конкурса «Мисс Россия – 2024» стала 18-летняя девушка из Чувашии
Мир
Трамп упрекнул власти США в недостаточной помощи пострадавшим от урагана «Хелен»
Мир
Макрон призвал прекратить поставки оружия Израилю
Мир
В Лас-Вегасе во время посадки загорелся пассажирский лайнер
Мир
Си Цзиньпин выразил готовность укреплять взаимоотношения с КНДР
Армия
Расчет гаубицы «Акация» метким выстрелом уничтожил блиндаж ВСУ под Угледаром
Армия
Минобороны сообщило об уничтожении беспилотника ВСУ над Белгородской областью
Мир
В Риме во время пропалестинской акции пострадали 30 полицейских
Мир
В соборе Нотр-Дам-де-Пари завершили работы по установке колоколов
Армия
Лейтенант Кантулаев вместе с сослуживцами взял штурмом укрепленный район ВСУ
Мир
В СМИ рассказали о даче Чекалиной признательных показаний на первом допросе
Общество
Павел Дуров анонсировал появление подарков в Telegram
Мир
Границу Сирии с территории Ливана за сутки пересекли более 5,6 тыс. человек
Армия
Вадим Самойлов выступил с ансамблем песни и пляски ЦВО для студентов Ростова-на-Дону
Общество
Адвокат посоветовала расплачиваться безналом при продаже недвижимости
Армия
В Казахстане завершилось учение ОДКБ «Нерушимое братство – 2024»

В России изобрели микросхемы толщиной в одну молекулу

Ученые впервые в мире смогли создать тонкий полупроводник с заданными свойствами
0
Фото: Getty Images/Monty Rakusen
Озвучить текст
Выделить главное
Вкл
Выкл

Российские ученые разработали способ создания двумерных (тонкая пленка толщиной в одну молекулу) полупроводников с заданными свойствами. Это позволит конструировать миниатюрные изделия электроники. О промышленном производстве, по словам экспертов, говорить пока рано — необходимо провести дополнительные исследования. Но сама новинка без преувеличения революционна.

Ученые НИТУ «МИСиС» изобрели самый тонкий в мире полупроводник с заданными свойствами. Они успешно провели эксперимент по контролируемому созданию материала на основе частично окисленного оксида бора. Группа исследователей во главе с профессором Дмитрием Гольбергом работала совместно с коллегами из Национального института материаловедения (Япония), Пекинского транспортного университета (КНР) и Технологического университета Квинсленда (Австралия). Результат исследования опубликован в научном журнале Advanced Materials.

Главный научный сотрудник Института биохимической физики РАН Леонид Чернозатонский подтвердил «Известиям», что открытие российских ученых имеет общемировое значение. Однако, по его словам, до промышленных образцов электроники еще далеко.

— Получен новый полупроводниковый материал на основе нитрида бора. У него можно контролируемым способом менять ширину запрещенной зоны путем изменения концентрации кислорода, — сказал Леонид Чернозатонский. — Предложенный метод позволяет быстро и просто — а значит, дешево — получить материал с контролируемой запрещенной зоной.

Ширина запрещенной зоны — термин из физики твердого тела. Значение этого параметра определяет, относится ли материал к проводникам, полупроводникам или диэлектрикам. Нанося разное количество кислорода на разные части нитрида бора, можно управлять его «проводимостью» и как бы рисовать на пленке нужную микросхему.

Ученые с помощью суперкомпьютерного кластера Cherry, находящегося в НИТУ «МИСиС», выстроили теоретическую модель нового материала. Далее в ходе эксперимента удалось создать опытный образец, который полностью соответствовал модели.

— Наше открытие позволит активно использовать этот материал в таких областях науки и техники, как фотовольтаика, оптоэлектроника, хранение энергии, — заявил один из соавторов работы, ведущий научный сотрудник лаборатории «Неорганические наноматериалы» НИТУ «МИСиС» Павел Сорокин.

Как известно, полупроводники являются основой современной электроники. За миниатюризацию борются все лидеры этой отрасли. Открытие позволит, например, создать не микропроцессор, а нанопроцессор — в тысячи раз меньше существующих. По словам исследователей, он будет потреблять меньше энергии, что приведет к миниатюризации аккумуляторов и появлению массовой «незаметной» электроники — невесомых кардиостимуляторов, дешевых очков с дополненной реальностью, телефонов-сережек и других гаджетов, которые пока сделать либо дорого, либо вообще невозможно.

Доцент Института нанотехнологий в электронике, спинтронике и фотонике НИЯУ МИФИ Алексей Грехов рассказал, что изучение свойств низкоразмерных структур или наноструктур — популярная тема экспериментальных и теоретических исследований в последнее время. В 2010 году двое российских ученых получили Нобелевскую премию за исследование графена — другого материала с подобными свойствами.

— Прикладное значение таких материалов разнообразно — от электроники и сенсоров до биосовместимых структур, — заявил Алексей Грехов. — В электронике перспективы таких элементов очевидны: уменьшается энергоемкость, повышается быстродействие и компактность. Однако до практического применения данных материалов еще далеко.

Работа проведена в рамках инфраструктурного проекта НИТУ «МИСиС» «Теоретическое материаловедение наноструктур», созданного в соответствии с Программой повышения конкурентоспособности ведущих российских университетов среди ведущих мировых научно-образовательных центров (Проект 5-100).

Читайте также
Прямой эфир