Мемристор Икс: нейронную сеть научили имитировать работу мозга
В современной науке существует фундаментальный вопрос: как работает мозг и можно ли искусственно воспроизвести происходящие в нем информационные процессы. Чтобы ответить на него, ученые используют математическое моделирование. В частности, эффекты кратковременной памяти удалось передать в биофизической модели реальной структуры мозга, а также в нейросети. Чтобы использовать возможности таких систем для компьютерных вычислений, нужно, чтобы электронные компоненты могли имитировать работу разных клеток мозга.
Память и пластичность
Ученые из Московского физико-технического института (Москва), Университета Лобачевского (Нижний Новгород) и Южного федерального университета (Таганрог) встроили математическую модель мемристора (электрический элемент в микроэлектронике, способный изменять свое сопротивление в зависимости от протекшего через него электрического заряда) в ранее разработанную биофизическую модель нейросети, которая имитирует передачу между нервными клетками тормозных сигналов. Они необходимы для поддержания баланса процессов возбуждения и торможения в мозге.
— Мы получили фундаментальный результат, позволяющий оценить функциональную значимость мемристоров для имитации информационных процессов мозга. Наша дальнейшая работа будет связана с интеграцией этих данных в архитектуры нейронных сетей и оценкой их эффективности на сложных нейроморфных задачах, например, математических вычислениях и имитации двигательной активности, — сообщил «Известиям» участник проекта, кандидат физико-математических наук, старший научный сотрудник Исследовательского центра в сфере искусственного интеллекта Университета Лобачевского Сергей Стасенко.
Исследователи заменили тормозную синаптическую пластичность в биофизической модели нейросети на мемристивную. Оказалось, что это не сказывается на динамике модели и позволяет также воспроизводить эффекты, наблюдаемые в экспериментах на мозге, когда проверяется память или отклик нейронов.
— Предполагается, что за счет более точной имитации информационных процессов в мозге расширятся как функциональные характеристики нейронной сети, так и ее энергоэффективность при реализации в нейроморфных чипах, — сказал Сергей Стасенко.
Стык ИИ и нейротехнологий
На примере созданной модели исследователям удалось показать, что внедрить мемристор в сложные нейронные сети, имитирующие системы человеческого мозга, действительно возможно. Это важно в первую очередь для того, чтобы повысить эффективность нейроморфных вычислительных систем, то есть компьютеров и микроэлектронных устройств, действующих по аналогии с человеческим мозгом. В дальнейшем эти результаты можно будет использовать при разработке архитектуры реальной нейронной сети, воспроизводящей биологические функции. Например, обладающей памятью.
Результат, полученный группой российских ученых, интересный, так как специалисты сумели продвинуть использование мемристоров в качестве элементов искусственных нейронных сетей вперед, подчеркнул доцент Высшей школы прикладной физики и космических технологий Санкт-Петербургского политехнического университета Петра Великого Николай Ушаков.
— Традиционные компьютеры явно подходят к определенному технологическому пределу, и так называемые биоморфные технологии выходят на передний план, на них возлагаются большие надежды. Ведь мозг человека гораздо эффективнее справляется с определенными задачами, чем вычислительная техника. Поэтому позаимствовать определенные идеи у природы многие пытаются, — отметил он.
Однако основной тонкий момент связан с тем, что понять реальные биологические процессы, которые происходят в мозге человека, очень сложно, подчеркнул эксперт. Поэтому работы в этом направлении необходимо продолжать.
Тема, которую затрагивают ученые, одна из самых актуальных на стыке ИИ и нейротехнологии, рассказала «Известиям» доцент кафедры инженерной кибернетики НИТУ МИСИС, глава компании «Нейроспутник» Александра Бернадотт. И такие разработки найдут применение в различных отраслях.
— Мы в своей работе по разработке нейроинтерфейсов, поддержанной АСИ и «Сколково», активно используем нейроморфные чипы для распознавания сигнала на носимых устройствах, — сказала она.
Результаты исследования, поддержанного грантом РНФ, опубликованы в журнале Chaos, Solitons & Fractals.